概要信息:
FrU@9!!9 *!a (1) m%i45k&@ (2) m % % 7 H*B (1) rn%%&*@ (2) m
gs9 a ~ e m m ~ ~ ~ ~ ~ x m = - .
-B% mrn+&a9 3n~-+&am%#a%%%%ds%-+&@m%%#%
I+ WPa%1DE%#mrn+&@flrl&§S&m. X+-+&i$P;flrl#lgidBH (original propo-
' sition) , 33 -+fly #EI$~B@JSI@~ (inverse proposition). &$kE%, $RE%a%
D 11-
- - ._ -
''Z q, Rr) p".
+ sem (negative proposition). &&&$f,, 'j~#3~$!&/ MSK, e 3 l l - z
"S p , Rr) q",
"19.", iff* "z$ .
,aP&essB.&sa%
'
"$+p, R31q".
&IPf:4;sr~~~B5;3-+-tfti~~~ie~.~~m*
44#E!Seff. I ~ M K + B S - + S ~ H ~ ~ Y &
h (inverse mid negative propmition). ~BBS', ~UI
I ' I .
1 "%P, D!J qY',
a~&ern@~&&%
"B l q 9 g!j p".
4312~ $U%~BIW!B "Fl&%A%i% HBBiT'i?"? BP&'ENi&!B&BS "mB%*
F6, rn&fi5rn%"*
I
I @iSRlI"Ji?l%T "8 P , WIJ 4" %SM.&lrH, 3&+?iBtJ&~%&&B, fiLtS&EE
%ass@. @Jan, -Fgm+&g.e : g .
I (1) s x > a 2 + b 2 , W!J x>2ab,
I ( 2 ) ab=O, JIJ a=O,
; r R r 1 ) %SrRr%, IfIra (2) %#&a.
I -&a. "s p , J!J d' %BrRrH9 EtEh P 3i~%BxU%a q . 2@; %kin% '
I %. I p G t l q . ZtF I
I P=% 9
I #Hi# p Bq mAfi&* (sufficient condition), q g p m&E (necessary condi-
, I
I tion).
I l m M 9 a ( 1 ) E T C . 9 a , I P
I
-7s
I x>a2 +b2*x>2ab, Q a%+J!i (1'1
I f i l l 4 "x>a2+b2" E "x>2ab" M%%, "z>2ab" g5 X%+& "#x<2ab,
I 14 xa2 +@" B(J&bS@. a. &a&&, a.iaL
. I x>a2+b2 &a,
I %R*x>2ab&A. 8
I T3iJ "g p 9 R!J q" %dM.&lr@+ !%&%14 a, "x>2ab" K “x>
I a2 + bzn J& ~ ) i~ . * '
I LtSpEqm%9%#?
I
I (1) E x = 1 , WrJ 2 - 4 x + 3 = 0 ;
(3) sin a=sin P B a = p &&*A#;
. . , . , . .
- 8 . : %,.i", . - ( - . . . . - , pi@, q # s s m s . , ..,:.':,., . $ .: . .,!%:;
. . . .~, - . . . . I , , . . . . .- 1: . . . . .
@k;zer'E;J%+ 9 p-q, E N p Pq rn%.ft.%f+, !? 5% P ma\%%#.
B-27-rn9 P P , f i U p d 3 B q rn&\B%4+9 q&Ep iXJ%%%#..
-%%, BUR%& p*q, X% P P , %it!*
P w.
&W, %.fl3%, P 5% q IKI%ff.&Z&W Ri%%E&@ (sufficient
and necessary condition). a%, BAR P $& q t%%3?&f+, @/t, q -& O " P ~ Q *
BP rn%S*#* A***" tit
& "P ?BFCT q"
@%&%, &SE! P W , %/t, P % 4 §%%g%.14. " q & R & L
# 3
- - + ------ - .- -
1. TjillB3u P, J4 n" &&%Bw&E@? BHZ&BtB&@rmi? 9#k&4+?
- - - - - - - - - - - - - - - - - - - -- - - A - - - - - -
---
(1, $$FBI .+b-%S%a %YE@ A-+B%f 6, ~ ! I E % a GFi i i fa Yfig
A - - - A - . . - - - .- -- - - - - . - . - - - -
- - -
(2) 2$g$Gj (a. ) i#%%/~?d~ a.=n+c ( c BXTW r R!lBW {a . ) %&E?5T 1 BtlZPgiW i _ - -- _ - - - - - - - _ - _ - -- _ - _ - __ -
( 3 % ~ @ 4 a %FE~ &T@Af &Sf. MJb% a $YE@ S-b.
- :\ .
2. &TW&B*. p t q l%Pff-&%F?
---- .-. - -- --- - - --- - +. -
(1) 8: ~ ? 4 ~ + 4 , -- - q: J = J m ; - -. -- - - .. - - --. -. - . --
- , ,
1 1 "
, . C -
.- < f.' ' I
- , * I . , , , --'
i . 4 . - i -t-m-Urrm.a - 0 1 ,& 1 L 0
. I 1 .
' -
ClI P S s sS%BM,. , 1 1 .. .
' . . : .
(2rl-163 su$ ,Hf l*@? . , \ ! *F \ j e 7 \ - .,, . 1 ' . I - 1 ,
(3 ) P EP BOE%;~#. - I s . - 1. 1 ,a,, -3 1 I ,! TI
2. ~ @ T ~ l . B E r H W & @ 2
I D a~94?. $3 aae3bz" &$@%@;
- .
: (2161al>l&l"&ad>~i'g&&*#; , , , : ! i i 5
. r 1 1 , . 1
' I I
J - ; $ , ' f \ , \ A
- \ 6
' . ;,*, '-.
1. -
ti ' " ,* : I : , ] , jy* \ -~$$*
c$Cs'$':T-aT<3, q: -1G,45$ 7- . , -
i
/ > I .I-' 4
I :it
7 .,
8 I! ' ' ! ; - I
c * ' . . . - - .1
't-
I W U W J , $fB ( 3 ) B&&H ( 1 > ( 2 >
I P A 4,
I @* " p H q".
*L p A q 8 X I $ f i A B I ?
I -&HI, %~l-JRS: ' I **,q*BPT6a@W,pAqtf%l;Y*.q
I R'PI$JRFPR-'FI$JWZRf$SIFt, P A q SBI$JS.
krn ' '~RI*~' +H&B ( l ) ( Z ) ~ B B @ @ , E
b (not)
&1-T4$3q&&, & ~ ~ I T v A & % E ~ + R % ~ ~ " X " &r%+fi$ "5" ig$$&piJ&3
%%.
&. ln%s , H l f - z # ~ % "a" *+T&z:
% P , q;i;P&J%+%, WI] ~ / \ q & & + % ; % P , q + ~ 5 - 4 ~ + & , WI] p A q E R + B .
* l f - % * ~ 4'?z'' *+-F%Z:
% a € P , a E Q , WI] a E P n Q ; % a e P & a @ Q , WI1 a # P n Q .
d ~ + ~ p , q +~SIJ%I-B?$$+P, Q , "g" "41%'~ " A " * ~ ~ j j t f , & ~ 6 6 ~ f l b4 e ?' d6 n ?' ,
w p a 1 s w L 6 ~ 9 9 3 " 5 " ~ & z ~ i t g g e ~ ~ - g ~ t 4 . ti^%+%, %a
3%' H f i 3- "a E P", " q ; f - " a E Q", " p A j$_g+~@" x;ffi T E p n
Q , "pAq&R+%" * f i T " a e P n Q " .
t-r sw s#ms#%a#&s&B
- ---
- -- .-.
1 R4134sl. 1%RmXF!lgSEM%B@. %@ ( ( 1 ( ( 2 -3479s x: P'fF4n
I B?Ef x l e t f i d 4 , Rt%P%ElOMW%. HfiTESbH. iBsiJ ( 3 ) B (1) Hl
I HL, H S B "x;J-fi;fs&" X$*S x 8f iBZ; B@ (4) S. ( 2 ) M S H k ? MBB ' "HfEWi--+" X$%g$xiEERZ9 MiR@ ( 3 ) ( 4 ) &J~~TJI~~J%~@FJB@? 84& I
I iBGJ (3)(4) B&@. ' %B "HEGiSBcJ" "x$E*-+" .BLfit+BtflqM*aB. ,. I
1 (universal quantifier), 9JaRSS V " S5. .$$f*%B
'-7 o *xe*
i7mSBa, flwtkf l*%. ffPi67E* ""xcf
I -b,, "pj-xrf-2ij-y
I %3!4n9 air@!: cc +E & 19 6c $8 4-
I XiJ-I3BM n € Z 9 2n+l#%&; KI"
I %8MiE3%#B%%
SBH M S % . 3~ / t , ? "W M +.I*&--+ x , G P ( x ) & ~ " ~ H R %
@iZ%
@E9J%, (1>(2) 71;B&%. SQ (3) & (1) HJBt&t, JqBi.3 "@~- -+ " x$g
~xmrgrwfi~e; BQ (4) (2) wsw, m ' 6 ~ ~ ~ - + 9 7 x r f ' m g X m ~ ~ s
ERZ, MfiE (3)(4) 9 B T q U P J % & B m B Q , B&SQ (3)(4) E&@.
jgs "G7&-+97 ' 3 9 J q q - + 9 7 &BB+B*a'-I@G.;Bsmo
(existential quantifier), #,J#@% " 3 " sz. *g@&Baf$~-&j I o C a f i 4
a, wi!ik*8@rn. &*-N&$i ,J9 "$i-,+" "$i *
@J?Iu, &a: x+" "$#I" p.
FA7 k- I:?, .;.,.- - . :
';ii
\ .
\ fttI%ll@m+MH+@@&S%ajJ y=f (dSi3, 3F&FJ@PPfi~kSSifaj8F
f (x2) - f(x1)
x.2 -a
3 S S l ~43B&."i-%T%%G!& y=f ( x ) M XI x2 IKJPMSRS
(average rate of change). 9 BkM AxQ%Sx2 --XI
Ax=x2 -21.
Sai6;.14Fft 6 5
mE A32 **BHHTZI I@--4- ''*S'', .rar XI+& ..f-e*-.2; %
#'a9
&i%6@k7kS%!~+ 9 ~ ~ J E ~ ~ ~ ~ ~ % ~ H ~ B ~ ~ F J H . %~I'IE%#$BZ-M J~%
@f&%mNaB (instantaneous velocity). S 3 H IXJTQB@~-S~~&~~@B ( )
-WBlfllUl~!$l[fE. 3 , finliil$tZ$JH EIB(~IWB$BB%? LBa, t = z E$F&IR~BB~
S*?
%!tl@ t=2 Wi!ZNdRi?2. ZE t=2 2iiliIS2G iE&%-/S'MBJ Z+A~, nt EFl;l
(riJ&2BY FfUSiE@, &sr lUBf iE , IH6% 0. 3 ntON, z + n t 8 2 2 E . -it-gEiirJ [2+nt, 21 jf;REfs7 [ z , 2+nt] P~JIEIY@B@-,,
FW.MBJ$UT.
0 0 . . OD...................D.O...O......O...e.*.
/
3 ntB%T o H, Y%%Rv$it/r,%%21'k#!%?
~ O e ~ o o o r m o o m o ~ o o m o o ~ o o o w o ~ o o ~ O ~ e O ~ O O O O e O o O O O ~ ~
%111E%, 3 nt BET o @, aP%* t M/I\T 2 139-a, 5BMkT 2 rn-%BjE~
2 w, p.NBB%BjtiT-+fizm@-3.1.
MBBHfiBS, srl's7l's7R I nt I %$F%/J\s$, p.@BB v %%RgZ'f. t =2 slj-Et%fb!
BE. BI&, S3E$Et=ZD$~@El$B@j3-13.1 m/s.
jtrT%S;k@, %lTJFB
lim h(2+At)-h(2) --13.
fu-4 At
3% "3 t = z , nt ~ i t i ~ o srl, F ~ B B vai~fimiz-13. 1".
%fn%6%% g & y = f (x) x=xo aBIJs$BJE (derivative), izf i axO k~
f (xo)b y'I,=,@, EP
f (Io)=lim &=lim f ( x o + ~ ) - f ( x o )
Ax A-OAX hrcO
f ( 2 )= lim &= lim(Ax-3)=-3.
-0 LLIL: -0
mBa%