电子课本高数选修1-1.pdf

  • 文件大小: 41.42MB
  • 文件类型: pdf
  • 上传日期: 2025-08-24
  • 下载次数: 0

概要信息:

FrU@9!!9 *!a (1) m%i45k&@ (2) m % % 7  H*B (1) rn%%&*@ (2) m 
gs9 a ~ e m m ~ ~ ~ ~ ~ x m = - .  
-B% mrn+&a9 3n~-+&am%#a%%%%ds%-+&@m%%#% 
I+ WPa%1DE%#mrn+&@flrl&§S&m. X+-+&i$P;flrl#lgidBH (original propo- 
' sition) , 33 -+fly #EI$~B@JSI@~ (inverse proposition). &$kE%, $RE%a% 
D 11- 
- - ._ - 
''Z q, Rr) p". 
+ sem (negative proposition). &&&$f,, 'j~#3~&#$!&/ MSK,  e 3 l l - z  
"S p ,  Rr) q", 
"19.", iff* "z$ . 
,aP&essB.&sa% 
' 
"$+p, R31q". 
&IPf:4;sr~~~B5;3-+-tfti~~~ie~.~~m* 
44#E&#!Seff. I ~ M K + B S - + S ~ H ~ ~ Y &  
h (inverse mid negative propmition). ~BBS', ~UI 
I '  I .  
1 "%P,  D!J qY', 
a~&ern@~&&% 
"B l q 9 g!j p". 
4312~ $U%~BIW!B "Fl&%A%i% HBBiT'i?"? BP&'ENi&!B&BS "mB%* 
F6, rn&fi5rn%"* 


I 
I @iSRlI"Ji?l%T "8 P ,  WIJ 4" %SM.&lrH, 3&+?iBtJ&~%&&B, fiLtS&EE 
%ass@. @Jan, -Fgm+&g.e : g .  
I (1) s x > a 2 + b 2 ,  W!J x>2ab, 
I ( 2 )  ab=O, JIJ a=O, 
; r R r  1 )  %SrRr%, IfIra (2) %#&a. 
I -&a. "s p ,  J!J d' %BrRrH9 EtEh P 3i~%BxU%a q .  2@; %kin% '
I %. I p G t l q .  ZtF I 
I P=% 9 
I #Hi# p Bq mAfi&* (sufficient condition), q g p m&E&# (necessary condi- 
, I 
I tion). 
I l m M 9 a ( 1 ) E T C . 9 a , I P  
I 
-7s 
I x>a2 +b2*x>2ab, Q a%+J!i (1'1 
I f i l l 4  "x>a2+b2" E "x>2ab" M%%&#, "z>2ab" g5 X%+& "#x<2ab, 
I 14 xa2 +@" B(J&bS&#@. a. &a&&, a.iaL 
. I x>a2+b2 &a, 
I %R*x>2ab&A. 8 
I T3iJ "g p 9  R!J q" %dM.&lr@+ !%&%14 a,  "x>2ab" K “x> 
I a2 + bzn J& ~ ) i~ . *  ' 
I LtSpEqm%9%#? 
I 
I (1) E x = 1 ,  WrJ 2 - 4 x + 3 = 0 ;  
(3) sin a=sin P B a = p  &&*A#; 
. .  , . , .  . 
- 8 . : %,.i", . - ( - . .  . . - ,  pi@, q # s s m s .  , ..,:.':,., . $  .: . .,!%:; 
. . . .~, - . . . . I , , . .  . . .- 1:  . . .  . . 
@k;zer'E;J%+ 9 p-q, E N  p Pq rn%.ft.%f+, !? 5% P ma\%%#. 
B-27-rn9 P P ,  f i U p d 3 B q  rn&\B%4+9 q&Ep iXJ%%%#.. 
-%%, BUR%& p*q, X% P P ,  %it!* 
P w. 
&W, %.fl3%, P 5% q IKI%ff.&Z&W Ri%%E&@ (sufficient 
and necessary condition). a%, BAR P $& q t%%3?&f+, @/t, q -& O " P ~ Q *  
BP rn%S*#* A***" tit 
& "P ?BFCT q" 
@%&%, &SE! P W ,  %/t, P % 4 §%%g%.14. " q  & R & L  
# 3 
- -  + ------ - .- - 
1. TjillB3u P, J4 n" &&%Bw&E@? BHZ&BtB&@rmi? 9#k&4+? 
- - - - - - - - - -  - - - - - - - - - -- - - A - - - - - -  
--- 
(1, $$FBI .+b-%S%a %YE@ A-+B%f 6, ~ ! I E %  a GFi i i fa  Yfig 
A - - - A  - . . - -  - .- -- - - -  - . - . - - - - 
- -  - 
(2) 2$g$Gj (a. ) i#%%/~?d~ a.=n+c ( c  BXTW r R!lBW {a .  ) %&E?5T 1 BtlZPgiW i _ -  -- _ - - - - - - - _ - _ - -- _ - _ - __  - 
( 3 % ~ @ 4  a %FE~ &T@Af &Sf. MJb% a $YE@ S-b. 
- :\ . 
2. &TW&B*. p t q l%Pff-&%F? 
---- .-. - -- --- - - --- - +. - 
(1) 8:  ~ ? 4 ~ + 4 ,  -- - q: J =  J m ;  - -. -- - - .. - - --. -.  - . -- 
- ,  , 
1 1  " 
, . C - 
.- < f.' ' I 
- , *  I . , , ,  --' 
i . 4 . - i  -t-m-Urrm.a - 0 1  ,& 1 L 0  
. I  1 .  
' -  
ClI P S s  sS%BM,. , 1 1  .. . 
' . . : .  
(2rl-163 su$ ,Hf l*@? . , \ ! *F \ j  e 7 \ -  .,, . 1 '  . I - 1 ,  
(3 )  P EP BOE%;~#. - I s . - 1. 1 ,a,, -3 1 I ,! TI 
2. ~ @ T ~ l . B E r H W & @ 2  
I D  a~94?. $3 aae3bz" &$@%@; 
- .  
: (2161al>l&l"&ad>~i'g&&*#; , , ,  : ! i i  5 
. r  1 1 ,  . 1  
' I I 
J - ; $ , ' f  \ , \ A  
- \  6 
' . ;,*, '-. 
1. - 
ti ' " ,* : I  : , ] , jy* \ -~$$*  
c$Cs'$':T-aT<3, q: -1G,45$  7- . , -  
i 
/ > I  .I-' 4 
I :it 
7 ., 
8 I! ' ' ! ; - I  
c *  ' . . .  - - .1 

't- 
I W U W J ,  $fB ( 3 )  B&&H ( 1 > ( 2 >  
I P A  4,  
I @* " p  H q". 
*L p A q  8 X I $ f i A B I ?  
I -&HI, %~l-JRS: ' I **,q*BPT6a@W,pAqtf%l;Y*.q 
I R'PI$JRFPR-'FI$JWZRf$SIFt, P A  q SBI$JS. 
krn ' '~RI*~'  +H&B ( l ) ( Z )  ~ B B @ @ ,  E 

b (not) 


&1-T4$3q&&, & ~ ~ I T v A & % E ~ + R % ~ ~  " X "  &r%+fi$ "5" ig$$&piJ&3 
%%. 
&. ln%s ,  H l f - z # ~ %  "a" *+T&z: 
% P ,  q;i;P&J%+%, WI] ~ / \ q & & + % ;  % P ,  q + ~ 5 - 4 ~ + & ,  WI] p A q E R + B .  
* l f - % * ~  4'?z'' *+-F%Z: 
% a € P ,  a E Q ,  WI] a E P n Q ;  % a e P & a @ Q ,  WI1 a # P n Q .  
d ~ + ~ p ,  q +~SIJ%I-B?$$+P, Q ,  "g" "41%'~ " A "  * ~ ~ j j t f , & ~  6 6 ~ f l  b4 e ?' d6 n ?' , 
w p a 1 s w  L 6 ~ 9 9  3 " 5 "  ~ & z ~ i t g g e ~ ~ - g ~ t 4 .   ti^%+%, %a 
3%' H f i  3- "a E P", " q  ; f -  " a  E Q", " p  A j$_g+~@" x;ffi T E p  n 
Q ,  "pAq&R+%" * f i T  " a e P n Q " .  
t-r sw s#ms#%a#&s&B 
- --- 
- -- .-. 
1 R4134sl. 1%RmXF!lgSEM%B@. %@ ( ( 1 ( ( 2  -3479s x: P'fF4n 
I  B?Ef x l e t f i d 4 ,  Rt%P%ElOMW%. HfiTESbH. iBsiJ ( 3 )  B (1) Hl 
I HL, H S B  "x;J-fi;fs&" X$*S x 8f iBZ;  B@ (4)  S. ( 2 )  M S H k ?  MBB ' "HfEWi--+" X$%g$xiEERZ9 MiR@ ( 3 ) ( 4 )  &J~~TJI~~J%~@FJB@? 84& I 
I iBGJ (3)(4) B&@. ' %B "HEGiSBcJ" "x$E*-+" .BLfit+BtflqM*aB. ,. I 
1 (universal quantifier), 9JaRSS V " S5. .$$f*%B 
'-7 o *xe* 
i7mSBa, flwtkf l*%. ffPi67E* ""xcf 
I -b,, "pj-xrf-2ij-y 
I %3!4n9 air@!: cc +E & 19 6c $8 4- 
I XiJ-I3BM n € Z 9  2n+l#%&; KI" 
I %8MiE3%#B%% 
SBH M S % .  3~ / t , ?  "W M +.I*&--+ x ,  G P ( x ) & ~ "  ~ H R %  
@iZ% 
@E9J%, (1>(2) 71;B&%. SQ (3) & (1) HJBt&t, JqBi.3 "@~- -+ "  x$g 
~xmrgrwfi~e; BQ (4)  (2) wsw, m ' 6 ~ ~ ~ - + 9 7  x r f ' m g X m ~ ~ s  
ERZ, MfiE (3)(4) 9 B T q U P J % & B m B Q ,  B&SQ (3)(4)  E&@. 
jgs "G7&-+97 ' 3 9 J q q - + 9 7  &BB+B*a'-I@G.;Bsmo 
(existential quantifier), #,J#@% " 3 " sz. *g@&Baf$~-&j I o C a f i 4  
a, wi!ik*8@rn. &*-N&$i ,J9 "$i-,+" "$i * 
@J?Iu, &a: x+" "$#I" p. 
















































FA7 k- I:?, .;.,.- - . : 
';ii 

\ .  
\ fttI%ll@m+MH+@@&S%ajJ y=f (dSi3, 3F&FJ@PPfi~kSSifaj8F 
f (x2) -  f(x1) 
x.2 -a 
3 S S l  ~43B&."i-%T%%G!& y=f ( x ) M  XI x2 IKJPMSRS 
(average rate of change). 9 BkM AxQ%Sx2 --XI 
Ax=x2 -21. 
Sai6;.14Fft 6 5  
mE A32 **BHHTZI I@--4- ''*S'', .rar XI+& ..f-e*-.2; % 
#'a9 
&i%6@k7kS%!~+ 9 ~ ~ J E ~ ~ ~ ~ ~ % ~ H ~ B ~ ~ F J H .  %~I'IE%#$BZ-M J~% 
@f&%mNaB (instantaneous velocity). S 3 H  IXJTQB@~-S~~&~~@B ( ) 
-WBlfllUl~!$l[fE. 3 ,  finliil$tZ$JH EIB(~IWB$BB%? LBa, t = z  E$F&IR~BB~ 
S*? 
%!tl@ t=2 Wi!ZNdRi?2. ZE t=2 2iiliIS2G iE&%-/S'MBJ Z+A~, nt EFl;l 
(riJ&2BY FfUSiE@, &sr lUBf iE ,  IH6% 0. 3 ntON, z + n t 8 2 2 E .  -it-gEiirJ [2+nt, 21 jf;REfs7 [ z ,  2+nt] P~JIEIY@B@-,, 
FW.MBJ$UT&#. 
0 0 . .  OD...................D.O...O......O...e.*. 
/ 
3 ntB%T o H, Y%%Rv$it/r,%%21'k#!%? 
~ O e ~ o o o r m o o m o ~ o o m o o ~ o o o w o ~ o o ~ O ~ e O ~ O O O O e O o O O O ~ ~  
%111E%, 3 nt BET o @, aP%* t M/I\T 2 139-a, 5BMkT 2 rn-%BjE~ 
2 w, p.NBB%BjtiT-+fizm@-3.1. 
MBBHfiBS, srl's7l's7R I nt I %$F%/J\s$, p.@BB v %%RgZ'f. t =2 slj-Et%fb! 
BE. BI&, S3E$Et=ZD$~@El$B@j3-13.1 m/s. 
jtrT%S;k@, %lTJFB 
lim h(2+At)-h(2) --13.  
fu-4 At 
3% "3 t = z ,  nt ~ i t i ~  o srl, F ~ B B  vai~fimiz-13. 1". 
%fn%6%% g &  y = f  (x) x=xo aBIJs$BJE (derivative), izf i  axO k~ 
f (xo)b y'I,=,@, EP 
f (Io)=lim &=lim f ( x o + ~ ) - f ( x o )  
Ax A-OAX hrcO 
f ( 2 )=  lim &= lim(Ax-3)=-3. 
-0 LLIL: -0 
mBa%

缩略图:

  • 缩略图1
  • 缩略图2
  • 缩略图3
  • 缩略图4
  • 缩略图5
当前页面二维码

广告: